Fundamental Physical Constants — Extensive Listing

20/05/2014 20:04
 
From: https://physics.nist.gov/constants
Fundamental Physical Constants — Extensive Listing
Relative std.
Quantity Symbol Value Unit uncert. ur
UNIVERSAL
speed of light in vacuum c; c0 299 792 458 m s¤1 (exact)
magnetic constant 0 4p 10¤7 N A¤2
= 12:566 370 614::: 10¤7 N A¤2 (exact)
electric constant 1/0c2 0 8:854 187 817::: 10¤12 F m¤1 (exact)
characteristic impedance
of vacuum
p
0=0 = 0c Z0 376:730 313 461::: 
 (exact)
Newtonian constant
of gravitation G 6:6742(10) 10¤11 m3 kg¤1 s¤2 1:5 10¤4
G=hc 6:7087(10) 10¤39 (GeV=c2)¤2 1:5 10¤4
Planck constant h 6:626 0693(11) 10¤34 J s 1:7 10¤7
in eV s 4:135 667 43(35) 10¤15 eV s 8:5 10¤8
h=2p h 1:054 571 68(18) 10¤34 J s 1:7 10¤7
in eV s 6:582 119 15(56) 10¤16 eV s 8:5 10¤8
hc in Mev fm 197:326 968(17) MeV fm 8:5 10¤8
Planck mass (hc=G)1=2 mP 2:176 45(16) 10¤8 kg 7:5 10¤5
Planck temperature (hc5=G)1=2=k TP 1:416 79(11) 1032 K 7:5 10¤5
Planck length h=mPc = (hG=c3)1=2 lP 1:616 24(12) 10¤35 m 7:5 10¤5
Planck time lP=c = (hG=c5)1=2 tP 5:391 21(40) 10¤44 s 7:5 10¤5
ELECTROMAGNETIC
elementary charge e 1:602 176 53(14) 10¤19 C 8:5 10¤8
e=h 2:417 989 40(21) 1014 A J¤1 8:5 10¤8
magnetic flux quantum h=2e 0 2:067 833 72(18) 10¤15 Wb 8:5 10¤8
conductance quantum 2e2=h G0 7:748 091 733(26) 10¤5 S 3:3 10¤9
inverse of conductance quantum G¤1
0 12 906:403 725(43) 
 3:3 10¤9
Josephson constant1 2e=h KJ 483 597:879(41) 109 Hz V¤1 8:5 10¤8
von Klitzing constant2
h=e2 = 0c=2 RK 25 812:807 449(86) 
 3:3 10¤9
Bohr magneton eh=2me B 927:400 949(80) 10¤26 J T¤1 8:6 10¤8
in eV T¤1 5:788 381 804(39) 10¤5 eV T¤1 6:7 10¤9
B=h 13:996 2458(12) 109 Hz T¤1 8:6 10¤8
B=hc 46:686 4507(40) m¤1 T¤1 8:6 10¤8
B=k 0:671 7131(12) K T¤1 1:8 10¤6
nuclear magneton eh=2mp N 5:050 783 43(43) 10¤27 J T¤1 8:6 10¤8
in eV T¤1 3:152 451 259(21) 10¤8 eV T¤1 6:7 10¤9
N=h 7:622 593 71(65) MHz T¤1 8:6 10¤8
N=hc 2:542 623 58(22) 10¤2 m¤1 T¤1 8:6 10¤8
N=k 3:658 2637(64) 10¤4 K T¤1 1:8 10¤6
ATOMIC AND NUCLEAR
General
Page 1 Source: Peter J. Mohr and Barry N. Taylor, CODATA Recommended Values of the Fundamental Physical
Constants: 2002, published in Review of Modern Physics 77, 1 (2005).
From: https://physics.nist.gov/constants
Fundamental Physical Constants — Extensive Listing
Relative std.
Quantity Symbol Value Unit uncert. ur
fine-structure constant e2=4p0hc 7:297 352 568(24) 10¤3 3:3 10¤9
inverse fine-structure constant ¤1 137:035 999 11(46) 3:3 10¤9
Rydberg constant 2mec=2h R1 10 973 731:568 525(73) m¤1 6:6 10¤12
R1c 3:289 841 960 360(22) 1015 Hz 6:6 10¤12
R1hc 2:179 872 09(37) 10¤18 J 1:7 10¤7
R1hc in eV 13:605 6923(12) eV 8:5 10¤8
Bohr radius =4pR1 = 4p0h2=mee2 a0 0:529 177 2108(18) 10¤10 m 3:3 10¤9
Hartree energy e2=4p0a0 = 2R1hc
= 2mec2 Eh 4:359 744 17(75) 10¤18 J 1:7 10¤7
in eV 27:211 3845(23) eV 8:5 10¤8
quantum of circulation h=2me 3:636 947 550(24) 10¤4 m2 s¤1 6:7 10¤9
h=me 7:273 895 101(48) 10¤4 m2 s¤1 6:7 10¤9
Electroweak
Fermi coupling constant3 GF=(hc)3 1:166 39(1) 10¤5 GeV¤2 8:6 10¤6
weak mixing angle4 W (on-shell scheme)
sin2 W = s2
W
1 ¤ (mW=mZ)2 sin2 W 0:222 15(76) 3:4 10¤3
Electron, e¤
electron mass me 9:109 3826(16) 10¤31 kg 1:7 10¤7
in u, me = Ar(e) u (electron
relative atomic mass times u) 5:485 799 0945(24) 10¤4 u 4:4 10¤10
energy equivalent mec2 8:187 1047(14) 10¤14 J 1:7 10¤7
in MeV 0:510 998 918(44) MeV 8:6 10¤8
electron-muon mass ratio me=mm 4:836 331 67(13) 10¤3 2:6 10¤8
electron-tau mass ratio me=mt 2:875 64(47) 10¤4 1:6 10¤4
electron-proton mass ratio me=mp 5:446 170 2173(25) 10¤4 4:6 10¤10
electron-neutron mass ratio me=mn 5:438 673 4481(38) 10¤4 7:0 10¤10
electron-deuteron mass ratio me=md 2:724 437 1095(13) 10¤4 4:8 10¤10
electron to alpha particle mass ratio me=ma 1:370 933 555 75(61) 10¤4 4:4 10¤10
electron charge to mass quotient ¤e=me ¤1:758 820 12(15) 1011 C kg¤1 8:6 10¤8
electron molar mass NAme M(e);Me 5:485 799 0945(24) 10¤7 kg mol¤1 4:4 10¤10
Compton wavelength h=mec C 2:426 310 238(16) 10¤12 m 6:7 10¤9
C=2p = a0 = 2=4pR1 C 386:159 2678(26) 10¤15 m 6:7 10¤9
classical electron radius 2a0 re 2:817 940 325(28) 10¤15 m 1:0 10¤8
Thomson cross section (8p=3)r2
e e 0:665 245 873(13) 10¤28 m2 2:0 10¤8
electron magnetic moment e ¤928:476 412(80) 10¤26 J T¤1 8:6 10¤8
to Bohr magneton ratio e=B ¤1:001 159 652 1859(38) 3:8 10¤12
to nuclear magneton ratio e=N ¤1838:281 971 07(85) 4:6 10¤10
electron magnetic moment
anomaly jej=B ¤ 1 ae 1:159 652 1859(38) 10¤3 3:2 10¤9
electron g-factor ¤2(1 + ae) ge ¤2:002 319 304 3718(75) 3:8 10¤12
Page 2 Source: Peter J. Mohr and Barry N. Taylor, CODATA Recommended Values of the Fundamental Physical
Constants: 2002, published in Review of Modern Physics 77, 1 (2005).
From: https://physics.nist.gov/constants
Fundamental Physical Constants — Extensive Listing
Relative std.
Quantity Symbol Value Unit uncert. ur
electron-muon
magnetic moment ratio e=m 206:766 9894(54) 2:6 10¤8
electron-proton
magnetic moment ratio e=p ¤658:210 6862(66) 1:0 10¤8
electron to shielded proton
magnetic moment ratio e=0
p
¤658:227 5956(71) 1:1 10¤8
(H2O, sphere, 25 C)
electron-neutron
magnetic moment ratio e=n 960:920 50(23) 2:4 10¤7
electron-deuteron
magnetic moment ratio e=d ¤2143:923 493(23) 1:1 10¤8
electron to shielded helion5
magnetic moment ratio e=0
h 864:058 255(10) 1:2 10¤8
(gas, sphere, 25 C)
electron gyromagnetic ratio 2jej=h 
e 1:760 859 74(15) 1011 s¤1 T¤1 8:6 10¤8
 
e=2p 28 024:9532(24) MHz T¤1 8:6 10¤8
Muon, ¤
muon mass mm 1:883 531 40(33) 10¤28 kg 1:7 10¤7
in u, mm = Ar(m) u (muon
relative atomic mass times u) 0:113 428 9264(30) u 2:6 10¤8
energy equivalent mmc2 1:692 833 60(29) 10¤11 J 1:7 10¤7
in MeV 105:658 3692(94) MeV 8:9 10¤8
muon-electron mass ratio mm=me 206:768 2838(54) 2:6 10¤8
muon-tau mass ratio mm=m 5:945 92(97) 10¤2 1:6 10¤4
muon-proton mass ratio mm=mp 0:112 609 5269(29) 2:6 10¤8
muon-neutron mass ratio mm=mn 0:112 454 5175(29) 2:6 10¤8
muon molar mass NAmm M(m);Mm 0:113 428 9264(30) 10¤3 kg mol¤1 2:6 10¤8
muon Compton wavelength h=mmc C;m 11:734 441 05(30) 10¤15 m 2:5 10¤8
C;m=2 C;m 1:867 594 298(47) 10¤15 m 2:5 10¤8
muon magnetic moment m ¤4:490 447 99(40) 10¤26 J T¤1 8:9 10¤8
to Bohr magneton ratio m=B ¤4:841 970 45(13) 10¤3 2:6 10¤8
to nuclear magneton ratio m=N ¤8:890 596 98(23) 2:6 10¤8
muon magnetic moment anomaly
jmj=(eh=2mm) ¤ 1 am 1:165 919 81(62) 10¤3 5:3 10¤7
muon g-factor ¤2(1 + am) gm ¤2:002 331 8396(12) 6:2 10¤10
muon-proton
magnetic moment ratio m=p ¤3:183 345 118(89) 2:8 10¤8
Tau, ¤
tau mass6 mt 3:167 77(52) 10¤27 kg 1:6 10¤4
in u, mt = Ar(t) u (tau
relative atomic mass times u) 1:907 68(31) u 1:6 10¤4
energy equivalent mtc2 2:847 05(46) 10¤10 J 1:6 10¤4
Page 3 Source: Peter J. Mohr and Barry N. Taylor, CODATA Recommended Values of the Fundamental Physical
Constants: 2002, published in Review of Modern Physics 77, 1 (2005).
From: https://physics.nist.gov/constants
Fundamental Physical Constants — Extensive Listing
Relative std.
Quantity Symbol Value Unit uncert. ur
in MeV 1776:99(29) MeV 1:6 10¤4
tau-electron mass ratio mt=me 3477:48(57) 1:6 10¤4
tau-muon mass ratio mt=mm 16:8183(27) 1:6 10¤4
tau-proton mass ratio mt=mp 1:893 90(31) 1:6 10¤4
tau-neutron mass ratio mt=mn 1:891 29(31) 1:6 10¤4
tau molar mass NAmt M(t);Mt 1:907 68(31) 10¤3 kg mol¤1 1:6 10¤4
tau Compton wavelength h=mtc C;t 0:697 72(11) 10¤15 m 1:6 10¤4
C;t=2 C;t 0:111 046(18) 10¤15 m 1:6 10¤4
Proton, p
proton mass mp 1:672 621 71(29) 10¤27 kg 1:7 10¤7
in u, mp = Ar(p) u (proton
relative atomic mass times u) 1:007 276 466 88(13) u 1:3 10¤10
energy equivalent mpc2 1:503 277 43(26) 10¤10 J 1:7 10¤7
in MeV 938:272 029(80) MeV 8:6 10¤8
proton-electron mass ratio mp=me 1836:152 672 61(85) 4:6 10¤10
proton-muon mass ratio mp=mm 8:880 243 33(23) 2:6 10¤8
proton-tau mass ratio mp=mt 0:528 012(86) 1:6 10¤4
proton-neutron mass ratio mp=mn 0:998 623 478 72(58) 5:8 10¤10
proton charge to mass quotient e=mp 9:578 833 76(82) 107 C kg¤1 8:6 10¤8
proton molar mass NAmp M(p), Mp 1:007 276 466 88(13) 10¤3 kg mol¤1 1:3 10¤10
proton Compton wavelength h=mpc C;p 1:321 409 8555(88) 10¤15 m 6:7 10¤9
C;p=2p C;p 0:210 308 9104(14) 10¤15 m 6:7 10¤9
proton rms charge radius Rp 0:8750(68) 10¤15 m 7:8 10¤3
proton magnetic moment p 1:410 606 71(12) 10¤26 J T¤1 8:7 10¤8
to Bohr magneton ratio p=B 1:521 032 206(15) 10¤3 1:0 10¤8
to nuclear magneton ratio p=N 2:792 847 351(28) 1:0 10¤8
proton g-factor 2p=N gp 5:585 694 701(56) 1:0 10¤8
proton-neutron
magnetic moment ratio p=n ¤1:459 898 05(34) 2:4 10¤7
shielded proton magnetic moment 0
p 1:410 570 47(12) 10¤26 J T¤1 8:7 10¤8
(H2O, sphere, 25 C)
to Bohr magneton ratio 0
p=B 1:520 993 132(16) 10¤3 1:1 10¤8
to nuclear magneton ratio 0
p=N 2:792 775 604(30) 1:1 10¤8
proton magnetic shielding
correction 1 ¤ 0
p=p 0
p 25:689(15) 10¤6 5:7 10¤4
(H2O, sphere, 25 C)
proton gyromagnetic ratio 2p=h 
p 2:675 222 05(23) 108 s¤1 T¤1 8:6 10¤8
 
p=2p 42:577 4813(37) MHz T¤1 8:6 10¤8
shielded proton gyromagnetic
ratio 20
p=h 
0
p 2:675 153 33(23) 108 s¤1 T¤1 8:6 10¤8
(H2O, sphere, 25 C)
Page 4 Source: Peter J. Mohr and Barry N. Taylor, CODATA Recommended Values of the Fundamental Physical
Constants: 2002, published in Review of Modern Physics 77, 1 (2005).
From: https://physics.nist.gov/constants
Fundamental Physical Constants — Extensive Listing
Relative std.
Quantity Symbol Value Unit uncert. ur
 
0
p=2p 42:576 3875(37) MHz T¤1 8:6 10¤8
Neutron, n
neutron mass mn 1:674 927 28(29) 10¤27 kg 1:7 10¤7
in u, mn = Ar(n) u (neutron
relative atomic mass times u) 1:008 664 915 60(55) u 5:5 10¤10
energy equivalent mnc2 1:505 349 57(26) 10¤10 J 1:7 10¤7
in MeV 939:565 360(81) MeV 8:6 10¤8
neutron-electron mass ratio mn=me 1838:683 6598(13) 7:0 10¤10
neutron-muon mass ratio mn=mm 8:892 484 02(23) 2:6 10¤8
neutron-tau mass ratio mn=mt 0:528 740(86) 1:6 10¤4
neutron-proton mass ratio mn=mp 1:001 378 418 70(58) 5:8 10¤10
neutron molar mass NAmn M(n);Mn 1:008 664 915 60(55) 10¤3 kg mol¤1 5:5 10¤10
neutron Compton wavelength h=mnc C;n 1:319 590 9067(88) 10¤15 m 6:7 10¤9
C;n=2p C;n 0:210 019 4157(14) 10¤15 m 6:7 10¤9
neutron magnetic moment n ¤0:966 236 45(24) 10¤26 J T¤1 2:5 10¤7
to Bohr magneton ratio n=B ¤1:041 875 63(25) 10¤3 2:4 10¤7
to nuclear magneton ratio n=N ¤1:913 042 73(45) 2:4 10¤7
neutron g-factor 2n=N gn ¤3:826 085 46(90) 2:4 10¤7
neutron-electron
magnetic moment ratio n=e 1:040 668 82(25) 10¤3 2:4 10¤7
neutron-proton
magnetic moment ratio n=p ¤0:684 979 34(16) 2:4 10¤7
neutron to shielded proton
magnetic moment ratio n=0
p
¤0:684 996 94(16) 2:4 10¤7
(H2O, sphere, 25 C)
neutron gyromagnetic ratio 2jnj=h 
n 1:832 471 83(46) 108 s¤1 T¤1 2:5 10¤7
 
n=2p 29:164 6950(73) MHz T¤1 2:5 10¤7
Deuteron, d
deuteron mass md 3:343 583 35(57) 10¤27 kg 1:7 10¤7
in u, md = Ar(d) u (deuteron
relative atomic mass times u) 2:013 553 212 70(35) u 1:7 10¤10
energy equivalent mdc2 3:005 062 85(51) 10¤10 J 1:7 10¤7
in MeV 1875:612 82(16) MeV 8:6 10¤8
deuteron-electron mass ratio md=me 3670:482 9652(18) 4:8 10¤10
deuteron-proton mass ratio md=mp 1:999 007 500 82(41) 2:0 10¤10
deuteron molar mass NAmd M(d);Md 2:013 553 212 70(35) 10¤3 kg mol¤1 1:7 10¤10
deuteron rms charge radius Rd 2:1394(28) 10¤15 m 1:3 10¤3
deuteron magnetic moment d 0:433 073 482(38) 10¤26 J T¤1 8:7 10¤8
to Bohr magneton ratio d=B 0:466 975 4567(50) 10¤3 1:1 10¤8
to nuclear magneton ratio d=N 0:857 438 2329(92) 1:1 10¤8
Page 5 Source: Peter J. Mohr and Barry N. Taylor, CODATA Recommended Values of the Fundamental Physical
Constants: 2002, published in Review of Modern Physics 77, 1 (2005).
From: https://physics.nist.gov/constants
Fundamental Physical Constants — Extensive Listing
Relative std.
Quantity Symbol Value Unit uncert. ur
deuteron-electron
magnetic moment ratio d=e ¤4:664 345 548(50) 10¤4 1:1 10¤8
deuteron-proton
magnetic moment ratio d=p 0:307 012 2084(45) 1:5 10¤8
deuteron-neutron
magnetic moment ratio d=n ¤0:448 206 52(11) 2:4 10¤7
Helion, h
helion mass5 mh 5:006 412 14(86) 10¤27 kg 1:7 10¤7
in u, mh = Ar(h) u (helion
relative atomic mass times u) 3:014 932 2434(58) u 1:9 10¤9
energy equivalent mhc2 4:499 538 84(77) 10¤10 J 1:7 10¤7
in MeV 2808:391 42(24) MeV 8:6 10¤8
helion-electron mass ratio mh=me 5495:885 269(11) 2:0 10¤9
helion-proton mass ratio mh=mp 2:993 152 6671(58) 1:9 10¤9
helion molar mass NAmh M(h);Mh 3:014 932 2434(58) 10¤3 kg mol¤1 1:9 10¤9
shielded helion magnetic moment 0
h
¤1:074 553 024(93) 10¤26 J T¤1 8:7 10¤8
(gas, sphere, 25 C)
to Bohr magneton ratio 0
h=B ¤1:158 671 474(14) 10¤3 1:2 10¤8
to nuclear magneton ratio 0
h=N ¤2:127 497 723(25) 1:2 10¤8
shielded helion to proton
magnetic moment ratio 0
h=p ¤0:761 766 562(12) 1:5 10¤8
(gas, sphere, 25 C)
shielded helion to shielded proton
magnetic moment ratio 0
h=0
p
¤0:761 786 1313(33) 4:3 10¤9
(gas/H2O, spheres, 25 C)
shielded helion gyromagnetic
ratio 2j0
h
j=h 
0
h 2:037 894 70(18) 108 s¤1 T¤1 8:7 10¤8
(gas, sphere, 25 C)
 
0
h=2p 32:434 1015(28) MHz T¤1 8:7 10¤8
Alpha particle,
alpha particle mass ma 6:644 6565(11) 10¤27 kg 1:7 10¤7
in u, ma = Ar(a) u (alpha particle
relative atomic mass times u) 4:001 506 179 149(56) u 1:4 10¤11
energy equivalent mac2 5:971 9194(10) 10¤10 J 1:7 10¤7
in MeV 3727:379 17(32) MeV 8:6 10¤8
alpha particle to electron mass ratio ma=me 7294:299 5363(32) 4:4 10¤10
alpha particle to proton mass ratio ma=mp 3:972 599 689 07(52) 1:3 10¤10
alpha particle molar mass NAma M(a);Ma 4:001 506 179 149(56) 10¤3 kg mol¤1 1:4 10¤11
PHYSICO-CHEMICAL
Avogadro constant NA;L 6:022 1415(10) 1023 mol¤1 1:7 10¤7
atomic mass constant
mu = 1
12m(12C) = 1 u mu 1:660 538 86(28) 10¤27 kg 1:7 10¤7
Page 6 Source: Peter J. Mohr and Barry N. Taylor, CODATA Recommended Values of the Fundamental Physical
Constants: 2002, published in Review of Modern Physics 77, 1 (2005).
From: https://physics.nist.gov/constants
Fundamental Physical Constants — Extensive Listing
Relative std.
Quantity Symbol Value Unit uncert. ur
= 10¤3 kg mol¤1=NA
energy equivalent muc2 1:492 417 90(26) 10¤10 J 1:7 10¤7
in MeV 931:494 043(80) MeV 8:6 10¤8
Faraday constant7 NAe F 96 485:3383(83) C mol¤1 8:6 10¤8
molar Planck constant NAh 3:990 312 716(27) 10¤10 J s mol¤1 6:7 10¤9
NAhc 0:119 626 565 72(80) J m mol¤1 6:7 10¤9
molar gas constant R 8:314 472(15) J mol¤1 K¤1 1:7 10¤6
Boltzmann constant R=NA k 1:380 6505(24) 10¤23 J K¤1 1:8 10¤6
in eV K¤1 8:617 343(15) 10¤5 eV K¤1 1:8 10¤6
k=h 2:083 6644(36) 1010 Hz K¤1 1:7 10¤6
k=hc 69:503 56(12) m¤1 K¤1 1:7 10¤6
molar volume of ideal gas RT=p
T = 273:15 K; p = 101:325 kPa Vm 22:413 996(39) 10¤3 m3 mol¤1 1:7 10¤6
Loschmidt constant NA=Vm n0 2:686 7773(47) 1025 m¤3 1:8 10¤6
T = 273:15 K; p = 100 kPa Vm 22:710 981(40) 10¤3 m3 mol¤1 1:7 10¤6
Sackur-Tetrode constant
(absolute entropy constant)8
5
2 + ln[(2pmukT1=h2)3=2kT1=p0]
T1 = 1 K; p0 = 100 kPa S0=R ¤1:151 7047(44) 3:8 10¤6
T1 = 1 K; p0 = 101:325 kPa ¤1:164 8677(44) 3:8 10¤6
Stefan-Boltzmann constant
(p2=60)k4=h3c2 5:670 400(40) 10¤8 W m¤2 K¤4 7:0 10¤6
first radiation constant 2phc2 c1 3:741 771 38(64) 10¤16 W m2 1:7 10¤7
first radiation constant for spectral radiance 2hc2 c1L 1:191 042 82(20) 10¤16 W m2 sr¤1 1:7 10¤7
second radiation constant hc=k c2 1:438 7752(25) 10¤2 m K 1:7 10¤6
Wien displacement law constant
b = maxT = c2=4:965 114 231::: b 2:897 7685(51) 10¤3 m K 1:7 10¤6
1 See the “Adopted values” table for the conventional value adopted internationally for realizing representations of the volt using the Josephson
effect.
2 See the “Adopted values” table for the conventional value adopted internationally for realizing representations of the ohm using the quantum Hall
effect.
3 Value recommended by the Particle Data Group (Hagiwara, et al., 2002).
4 Based on the ratio of the masses of theWand Z bosonsmW=mZ recommended by the Particle Data Group (Hagiwara, et al., 2002). The value for
sin2W they recommend, which is based on a particular variant of the modified minimal subtraction (MS) scheme, is sin2 ^W(MZ) = 0:231 24(24).
5 The helion, symbol h, is the nucleus of the 3He atom.
6 This and all other values involving m are based on the value of m c2 in MeV recommended by the Particle Data Group, (Hagiwara, et al.,
2002), but with a standard uncertainty of 0:29 MeV rather than the quoted uncertainty of ¤0:26 MeV, +0:29 MeV.
7 The numerical value of F to be used in coulometric chemical measurements is 96 485:336(16) [1:7 10¤7] when the relevant current is measured
in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the internationally adopted conventional
values of the Josephson and von Klitzing constants KJ¤90 and RK¤90 given in the “Adopted values” table.
8 The entropy of an ideal monoatomic gas of relative atomic mass Ar is given by S = S0 + 3
2R lnAr ¤ R ln(p=p0) + 5
2R ln(T=K): 9 The
relative atomic mass Ar(X) of particle X with mass m(X) is defined by Ar(X) = m(X)=mu, where mu = m(12C)=12 = Mu=NA = 1 u is the
atomic mass constant, NA is the Avogadro constant, and u is the atomic mass unit. Thus the mass of particle X in u is m(X) = Ar(X) u and the
molar mass of X is M(X) = Ar(X)Mu.
Page 7 Source: Peter J. Mohr and Barry N. Taylor, CODATA Recommended Values of the Fundamental Physical
Constants: 2002, published in Review of Modern Physics 77, 1 (2005).
From: https://physics.nist.gov/constants
10 This is the value adopted internationally for realizing representations of the volt using the Josephson effect.
11 This is the value adopted internationally for realizing representations of the ohm using the quantum Hall effect. a This is the lattice parameter
(unit cell edge length) of an ideal single crystal of naturally occurring Si free of impurities and imperfections, and is deduced from measurements
on extremely pure and nearly perfect single crystals of Si by correcting for the effects of impurities.
Page 8 Source: Peter J. Mohr and Barry N. Taylor, CODATA Recommended Values of the Fundamental Physical
Constants: 2002, published in Review of Modern Physics 77, 1 (2005).